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Necessary and sufficient conditions are established under which an incom-
pletely controllable, conservative, mechanical system can be made completely
controllable, stabillizable and observable in the neighborhood of steady-
state motion by the application of dissipative and gyroscoplec forces. Note
that paper [1] has considered the influence of dissipative and gyroscopic
forces on the controllability properties of conservative mechanical systems
in certain special cases.

1. Let us consider a holonomic, conservative, mechanical system control-
led by one controlling action. 1t is well-known [2] that 1in the neighborhood

of equilibrium the linear approximation of such & system can be represented in
the form .
yi”:l,iyi—{—diu (i=1,...,n) (1-1)

It 1s also known [3] that system (1.1) 1s completely controllable by the
action uy 1f and only if

xi#:lj, ot,#-:O, (ii=1,..,n, i) (12)
Let us assume that system (1.1) is not completely controllable by the

action u . This signifies that there 1s equality among the i, or that
some of the numbers g, are equal to zero.

Below we investigate the following questlion: do there exlist dissjipative
forces such that the system (1.1), incompletely controllable by action u ,
becomes completely controllable by this action in the presence of dissipa-
tion? The necessary conditions for the solvabllity of this problem can be
formulated by the following theorems.

Theoren 1.1 . If among the numbers A, at least two are equal to
zero, or 1f A,= o,= O 1in even one of the equations of system (1.1), then
system (1.1) cannot be completely controllable by action u no matter what
dissipative or gyroscopic forces are supplementarlly applied in this system.
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Indeed, in the cases indicated at least one of the equations in {1.1) can
be brought to the form y, "= O by means of & nonsingular linear transforma-
tion.

Let some dissipative or gyroscoplc forces act supplementarily on the sys-
tem. Then, Equation y,"= O takes the form

y"i == alyx' ‘f“ "o + anyn' (1.3)

and, consequently, the quantity p,’'— G,%— ... — G, }p= const 1is the first
integral of system (1.1) in the presence of the dissipative and gyroscopic
forces independently of u . Obviously, & system 1s not completely control-
lable 1f it admits of even one firast integral which is independent of the
controlling action., This proves the assertion.

An analogous assertion holds for the nonlinear case if there exlat more
than two cyclic coordinates or if for one coordinate the corresponding value
a = O . Consider the system

y =AYy tou (=1,...,4k), y=hY G=k+1..,0 (1.9

Here

MER, w0 Gi=t...ki%))
MO0 (=1..,k—1, k+1,..,n)

Let us assume that desides the conservative forces and the controlling
action, dissipative forces act on system (1.4).

(1.5)

Theorem 1.2 . The fulfillment of conditions {(1.5) is sufficient
for the existence of dissipative forces such that “he incompletely control-
lable mechanical system {1.1) becomes completely controllable in the presence
of dissipation.

Proof . Let the dissipative forces be generated by the Rayleigh

funetion k—1 n
2R = ) 1+ D) (Nith™® + 2Migaa¥i Vian) (1.6)
i=1 i=k

Here 2 1is positive definite; vy,,,,= 0, 1.e, we conasider the system

oR .
Tpod = Tgpy Ty’ == Ty g — -ai—l’; Fou (i=1...,k)

an
Togy = o Ty == Mgy \ — 5:;—2; (i=k+1,...,n)

(1.7)

which in vector-matrix form will be x'= Ax + bu .

For an affirmative answer to the question we have posed it suffices tq
show that under a suitable cholce of numbers vy,,; satisfying the condition
that the function R in (1.6) be sign-positive:

1) the eigenvalues of matrix 4 will be real and distinct;

2) the projection of vector » on any row of the matrix S ! (where §
is the fundamental matrix of matrix 4 ) differes from zero.

PFor system (1.7) we construct the characteristic equation |4 — w2} = 0
which in expanded form will be

(o —yup — 43 . Mgy BV, kg — B Ay, (0) = 0 p=n—k+1) (1.8
Here a,,(u) 18 determined from the recurrence realizations
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Azi {“} = (_ ”2 = Ta-i+i, n-is1 P -+ 2‘n-iﬂ) Azi-z (M) - p'?.r?x-iﬂ, n-i+2 Aﬁ—é (}l)
(i:i?,..,,p,Ag'—"‘],Auz:O) “.9)

Let us show that under a proper choice of vy,,, Equation 4a,,(u) = O has
2t distinct real roots. We denote them by u, (29 ,(2y  The proof will
be carried out by induction. HEES ey pai

From (1.9), when ynn?>> — 4hn, Ay) = p® + ynmpt — An = 0 has the two

real roots 2) S
p ==t = Vit 4y
which also are distinct.

We show that under a proper choice of the numbers Yn—1, n—1, yn—1,n Equa-
tion 4,(u) = O has four real roots., Since A (u) -~ +® as p = —o and
since it follows from (1.9) that A,u,®) <0, being a continuous function,
54{u) has at least one real root in the interval — oo < u < 2} In Just
the same way 1t can be verified that the funection A,{u) has at least one
more real root in the interval pt* &p<l-4-cc Let e > O be an arbitrary
number. Under the conditions -

Vi > e — elh, Vit 4k, >0 (i=hk ..., n (1.10)
imposed on vy,, , there holds the relation
— (= Ay (— ) A >0 (1.11)
1.e. the point u = — ¢ 18 to be found between the rocts of Equation
—p—yau A= 0 (i ==ky...,m) (1.12)

We chose vy,.,,, such that
Ay (— &) = (— e Yan—1,n-1% - }"n—l) Ay (— €) — ely2 n, N1 >0
for which 1t is sufficlent to require that
7?1-1, n < {é_& {(* g + Tn-l, n-ig "E‘ }"n—l) A2 (_ %‘H “‘13)

Prom {1.10) and {1.13) 1t follows that the indicated cholces of v,,,
2-1.8~1 803 vy._;,, do not contradict the positive definiteness of 7 in
rl.g). On the other hand, under the indicated cholces of vy,., Yn.1,a-1 and
Yu,n-1 khe function A4(u5 , being a contlnuous funetion in the intervals

(—e, pt¥) and (u® — €), has at least one root in each.

But since the number of roots of A,{pu) cannot be larger than four, then
under the stated choices of vy, 8+{u) has four real, distinet roots distri-
buted in the following order

< <pf < e < <P <

Let us assume that the numbers Yn—ji1, n—jt1r Yn—ji1, n-jp2ld = Lo i 1)
are chosen such that the roots of A, (1) and A, () are real, distinct and
aistributed ‘as follows:

. i . . . . i-2)
p§2,~23 < ﬂiﬂ_” < pff' 2) < p(zaz 4) L vor L ”ﬁz 2} < V‘gm—g 4) <p,§§tl 2} <—eL ugm ) <
§— j = i~ {2 22
<pEN PP L pil <pflP < P <pg? (1.14)

and let us show that under (1.10) the numbers %Yn.ii1,n—it2 can be chosen
such that the roots of 45,(u) and Ag,_o(u) would be diatributed analegously
to (1.14). Prom (1.9), %1.11 , (1.1&3 and from the fact that Ay, (u)-(-1)'e
a8 y -2 o (L = 1,..., p), 1t follows that

sign By () = (— 1), sign A, (@A) =(— 1)

2i-3

@ ¢« @ s % 4 e e+ 2 e W ¥ A W e s« @8 = s e a . s .

sign Ay (W) = (— 1'%, sign Ay (W) =(— 1)i2 (1.15)

Ay (WD) <0, Ay, (fHP) <0
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then 4A;,(u) , being a continuous function, has at least one root in each of
the intervals

(— oo, pi¥7Y), (WA= Q@72 (80D, i)

But simee  (PE eI R WEEN, EED 400 o
Dy (Pag?-ix—z)) <o, By (”(iziﬂ)) <0, Byig(—8) >0, By (—€)>0
then from (1 ‘9) ("' e+ Tn-i+1, n-i+1 % + }"u—i+ 1) Azi-s (__ 8) >0
We choose Y;_jii, n—itz such that
2 (—e*+ Tn-it1, neis1 & - )"n-in) szi-z (—e)
Tnei+1, n-ite << e Ay (—€) (14n

Then in accordance with (1.9) we have Nay (—e)>0. Thlg. slgnifies that
82, (u) changes sign in the intervals (W% _—¢) ‘and (— e, p{¥—2y ana,
consequently, A,,(u) has one root in each of these intervals since 8a, (1)
cannot have more than 2¢ roots,

The roots of A4,,(u) and A,,_,(u) can not coincide since otherwise it
would follow from Formula (1.93 that Ao= 0 , but, A,=1 . Thus we can
assert that under a suitable choice of Vi Vi—y ; (¢ = A, . o, n)' Bap (w) has

2p real, distinct roots which do not coincide with the roots of Ag,.a(u).
Among the roots 'u(.‘z”) (f=1,...,2p) only one may be zero and, moreover, if
and only 1f \,= 0" Let us assume after this that only (*/) can be zero
while the remaining roots are nonzero. From (1.9) it follows also that the
zero root p$2p) does not depend on vy, while the remaining roots are non-
zero for any 'y,, .

. It follows from Equation (1.8) that under the conditlons Yii® > — 4A;
(i=1,...,k—1) the remaining 2k - 2 roots of this equation are real angd
nonzero as well,

Let R .
Yo — i+ ) 1+ 46 | < ming, |, BT

1] T+ V Tt /'71 | << max,, | llm(zp) B Hm(2p) +0 (1.18)
—Tu V1 HahFE -1 Y1t A
(L 1=1,..., k=1, ikl m=1,2,...,2p, m==] tor p;=0)
This can be achleved by increasing the v (i==1,..., &k — 1),
without viclati the positive-definiteness of form R . Then, all the roots

of Equation (1.8) will be real and distinct; we denote these roots by Hy
(/ =1,..., 2n) and only u,,_; will be zero.

To prove the second part of the theorem we must Show that not one of the
rows of the matrix $”' 1s perpendicular to the 2n~dimensional column=vector

b=1{0,a,,0,...,0,04 0, ..., 0} (1.19)
where S 1s the fundamental matrix of matrix 4
1 1...0 0 0 ...0
W P2. . .0 0 0 0
0 0 P | 1 o . 0
S=0 0.. T LS LA 0 ...0 (1.20)
0 0...0 0 s@En o slem)
K-
0 0 0 0 sk sim)
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The numbers sm (i = 2k — 1, s 2r), the components of the Jth eigenvec-
tor of matrix 4 (; =2k —1, 2n), satisfy the system of equations
st — e
2k = B8k

16) (i)
MeSsk-1 — TinSsk — Thirs® 2k+z pjs“)

® @ o + s o s s s e s+ & o e o o @

) .
~Tn-1,n ;;l—z + A‘nsgt)-l ~ TnnSs (]) = WIS, ;31) (1=2k—1,...,2n)
This system can be put in the form (1.21)

(7) —_ - (i) j
Yt n-i+1 Bi5en-2i-1= Mnsisg — BiTnoing, noisr —%5%) Soh-ote1 — BiYn-i41, n-i+2sg|)- 2+3

ggn)—zwz u;s s 2141 s(z':z)—l =1, st =0, Y1k = Tnns =0
(i=1,...,n—k-+1, j=2k—1,...,2n)
Let us replace the s{! in accordance with Formula
3(272_2“1 = T;Iuln”f;iz, n-1°"" T1_111+1 n-i+g ;3-1)-2“1
(i=1,...,n—k41, j=2k—1,...,2n, o) =5 =1)

Then Equations (1.21) take the form
) 2 2 )
H'JvZn-Zl—l - vgn—ziﬂ (;"n—iﬂ - Pan—iﬂ, n—-i+1 " p‘J )— p‘)Tn -i+1, n—i+2v;n—2i+3

(i=1,...,n—k4+1, j=2k—1,...,2n, o) =0) (1.22)
In case M;F0( =2k ..., 2n) when A,= O the components of the (2k—1)-st
eigenvector of matrix 4 take the form
STD —g @D g @R g @D =0, s =0 (1.23)
Equation (1.22) here becomes an identity. Therefore, dividing Equation
(1.22) by w7 = 2k, ..., 2n), we get
Mn—i+y (3)
1’;3.,)_21_1 (2,3_%“( B —Tn-is1, n -iu_p'j) Tn—1+1 n—1+2”2n -2i+3 (1.24)

Note that not one of Equations A, (u) = 0 (i =1, — 1) 1in (1.9) can
have a zero root and, therefore, when constructing system (1 9) we could take

)’n—iﬂ
Dgi w)= (T — P — Th_i4, n—iu) 91 -2 (n) — n—1+1 n-i+2 21—4 ()
(i=1,...,p—1, Do=1) (1.25)
as the recurrence relations.
It 1s obvious that the roots D,; (u) and By ) G=1,...,p— 1) coincide.
From Equations (1.24) and (1.25) it follows that

oP) i1 = Dy () (i=0,...,n—k J=2k...2n) (1.26)
Consequently,
j - - -1 std)
s‘z’n)—ziﬂ = Ynt1, n¥nmg,ne1 - Tneis1, neisaDaie (B3 Son—ai+g = HjS 'zn-2i+1 (1.27)

We need to compute the determinant of the matrix § 1in order to find the
matrix S™'. Since the matrix S has a quasidlagonal structure, then

s@k-n o )

o N Bt 2k-1
ISI=VimiFah. .. Vg gV bhgg |« = o o v e :
(2k-1) szm
San |
Multiplying every column of the determinant by  p7™ =2k — 1, .., 21,

J
Hayx.1 # 0), we reduce 1t to the Vandermonde determinant, Jafter which we get
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-2 an-k
2k-an Tkk+1)'n R A'k+1

S ¢ .
|8 1=(— 1% Vi + 4k - V1, gy + 40 Ry e X
Bog—y+ -+ Bon
X (Boy — p'zk-.l) < (Bgn = Bany) for Py, F 0 (1.28)
However, when by = 0, p‘zk 1 =0, then to compute |§| 1t suffices to divide

and multiply by plh* ... p)-F and we get a formula similar to (1. 28). Let us
denote the elements of the matrix S by »2,,. From (1.20) it follows that

Pu pu...0 0 0 ...0
pPa DPa. . .0 0 0 ... 0
g © + « Pok-g, ok-3 Pak-s, 2k O ---0 (20
N * + * Pyk-3, k-3 Pak-z, 2k-2 O -0 (1.29)
0 0 ...0 0 Pog-1,9k-1 * * * Pgk-1,2n
0 0...0 0 Pan,ak-1  * * - Pon,2n

To prove that not one of the rows of matrix S~ ! 1is perpendiocular to the
vector b in (1.19) it is sufficient to show that

1 1
= — — ==, = =30 ...
P Vo 44k + RS T peny +
1 1
Pok_g, ok-g3 = — ———o-=—F0, Pak-3, gk-3 = 0
o 2 V'\'zk‘l, k-1 dhgy VTzk'd, ko1 T Ay

-k
Tn—x,n v Tk,k+1p';lk_1
Pog-, o= (—1)" (o —Pox-y) + - (Bhgn — Pany) F0 tor pyey 0 (1.30)

Tn-tn* - Tkt
By ittt kKL
Pak-1, ok = (—1) (TR T +0 ftor py =0

Tn-1n- e Tk, k+1l"1
Piae = = 1) mBk—l '—'PJ) s (P’;-l P‘J) (l“] p’j+1) (}"j '_p'ﬂ'n) +90
(1 = 2k, .. ., 2n, By, By, By — integers)

And this follows immediately from the course of the proof of Theorem 1.2.

Thus, when conditions (1.5) are satisfied, the dissipative foroces can be
chosen in accordance with (1.6),(1.10),(1.17),(1.18). According to the theo-
rem on the duality [4] between complete controllability and observability,
system (1.1) which is incompletely observable with respect to the quantity
g = (ox) (where ¢ = f0,, Oyeeay 0rs Oseees 0)) can be made completely
observable if, in addition to the conservative forces, dissipative forces
are applied to the system in the above-mentioned manner. If we further
assume that )\ # O , then under (1.5) system (1.1) is incompletely observable
with respect to the rate ‘= (P#*x) , but in the presence of dissipative
forces ir the manner stated above, the system can be made completely observ-
able with respect to the gquantity g’= (d#%x) ,

In both cases conditions (1:5) are necessary and sufficient for the exist-
ence of the dissipative forces which make system (1.1) completely observable
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with respect to the quantities £ = (cx) and £‘= (¥*x) .

2. In order toc study the improvement in the controllability of system
(1.1) due to the application of gyroscopic forces, we can prove the suffici-
ency of the conditions of Theorem 1.1 in the presence of which system (1.%)
becomes completely controllable.

Proof . Let gyroscopic forces be applied such that in their presence
the system (1.4) takes the following form:

’

@ = Tosy Ty = My o (P=1,...,k—1)

2;-1= T2j
Ty = Mgy T Oy + 2yt 21)
Toi' = — @ 1 Ty; o b Mgy + 0Ty (=41, 0 n7=1,...,n w,=0)

and, in vector-matrix form, x’'= Ax + bu .

Let us reduce system (2.1) to the first normal form ([5}, p.125) by means
of nonsingular, real, linear transformation. Por this we must determine the
elementary divisors of the matrix 4 — ufF . We formulate Equation

{A —pE! =0 2.2)
which in expanded form will be
(}tg—»\q)(u:-——l.s)...(y?--kk_l)Azp(;x)z() (p=n—k-1)
Here 4g, (u) is determined from the recurrence relations
Ay ()= — A Agia (0) 0% A ) G==1,...,p Ae=1; A :=0) (2.3)

Denoting u®= v , let us show that the numbers w, can be chosen such that
Equation 4,,(v) =« O would have ¢ distinct, real roots not coincident with
the roots of Ag,.z{(v) = 0 . We prove this by induction. When { = 1 this
11 obvious since 1, is a real number while Ag(v)y=v—},=0 or
v =), Wnhen { =2 we have

Ay = —24,_) 8 (V) + oy _yA¢
Let — ¢ < 0O be an arbitrary number not coinciding with the numbers

Ap.py V¥ 4.e. with the roots of (A, — v) Ay (v} = 0, Then, when
. — (Apy_y F ) Da(—¢)
Wy > ok, , Ag(—e) L0
But ajsnee 2e(v) -~ + = g= - + » , then A,(v) has the real, distinct
roots v () The roots of a.(v) and A,ivg cannot coincide since other-
wise 4= O°, Thus we have proved that A {v] has two real, distinct roots

not coinciding with "(12)-

Let us assume that the functions A,,_p(v) and 4,,..(v) have, respec-
tively, ¢ —1 and ¢ -~ 2 real, distinet roots which do not coincide.

We show that w,.,,, can be secected such that j,,(v) has { real, dis-
tinoct roots not coinciﬁent with the roots of 4,5,.5 \:3 . We write ocut Ag, (v)

as follows:
Az{ (V) = (v - 7"n+1-i) Agi—s )+ mn-{+J.VA2i-4 ) (2.4)
stnoe 4,,(v) is s polynomial of order in v and the coefficient of
its leading term is unity (J = 0,..., P), then ;
sign Ay (— o0) = {— 1 sign Ay _y (— o0} = (— 1) (2.5)
Ay (4 00) >0, Ay, (+00)>0
let

e>max; |y @E-0| (</<i—2)

Here v\ are the roots of Equation 45,.4(v) = O . Thensigr Ay (—e) =
e (- 1)t-2 under (2.%),(2.5) and
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—(€+ Mjir) Do (V)
Wi > eAy , (—e)

Thus Equation A,,(v) = 0 has at least one root to the left of the point
v=—¢ . Since v =0 1s not a root of As,_¢(v) , then vAg,..(v) has
t —1 real, distinct roots, i.,e. as v 4is varied from —¢ to + o ,
vba;-+§v) changes sign ¢ — 1 times, DBy choosing w,_,,; 8¢ large that the
signs of wAg,.4(v) and 2., (v) coincide at least at one point in every
interval included between the roots of wAz,_4(v) = O , we obtain from (2.4)
and (2.5) that A,,(v) has ¢ — 1 changes of sign to the right of the point
v = — ¢ and, consequently, 4,,(v) , being a continucus function, has at
least { — 1 real roots to the right of the point v e —-¢ .,

FProm what we have sald above 1t follows that by increasing w,.,,, Wwe
can make A,,(v) have at least { real, distinet roots. But since 4, (v)
cannot have more than { roots, then A, (v) has precisely { real, dis-
tinct roots. The roote of A,,tv) and A't"(“) cannot coincide since other-
wise either of the roots of Az,.4(v) and A,,_,(v) would coineide or v =0
would be a root of Agz,_a2(v) .

But both these cases are impossible since in the first case, by induction,
Aaz-z(v) and Ag,-.(v) cannot have common roots, while in the second,
n " "Am—4+1== 0(i=1,...,p—1), which also is 1impossible according to
(1.2)
Thus, we have proved that 1t is possible to seleet w,,..., w,_, such
that the roots of A;,(v) are real, distinct and noncoincident with the roots
of A,,_a(v), (¢ =1,..., P) . Prom conditions (1.2) it follows that only
A, can be zero, and when A,= 0, (from (2.3)) A, (v) has one zero root
independently of w,,..., w,., . Let us assume that when A, = 0 only (2P)
equals zero, k

Since the roots of Aa,-z(v) and A,,_.(v) do not coincilde, it follows
from (2.3) that ), is the only root that A, (v) = O and az,_4(v) = O
can have in common. Consequently, in very small neighborhoods of the remain-
ing P ~ 1 roots of Equation Ag,(v) = O, the derivative

dA2p(v)

do,? =VAgp V)0

s .
1.e, there exist monotonous functions [;(0,) = v5(2p)(1== 2, . P ynien
express the roots  ,{2P)in terms of w,®. Hence it follows that under small
variations of w,” we’can achiev? that not one of the numbers \,,..., A\, ,
are coincident with the roots vi*P) ‘.,,vxp’of Equation Ap,(v) = 0 . ¥t
A\, 18 @ root of Az,_.(v) , then" +(3P) = %' which also does not coincide
with the numbers ‘A\""' A\._, . Hbwever, if ), 1s not a root of Equation

Ay s (V) = 0O,then V?P =+ M and by means of varying w,? we can achieve that
vgv) also 1s not ‘¢coincident with the numbers 1X,,..., A\,.; .

Thus, under (1.2) we can select the numbers w,,.,., w,., such that all
the roots of Equation (Vv — Ay ... (V— A"“’ﬁ B, ('vf == 0 are distinct and real.
ere

We denote by ;\11, DR B vkv KIS ‘V-nv an vy - O when A, =0 , mu',
by a proper choice of Ww,,..., Ws., , Equation (2.2) can be written as
B = h) e =R ) @) @R =) = 0 (2.6)

Consequently ([5], p.127), by means of a nonsingilar linear transformation
{in the real number field) we can reduce matrix A4 to a quasidiagonal form
each of whose diagonal cells is of second order and has the form

ol

" 0 2.7

Then in matrix symbolism system (2.1) takes the form
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0 1...0 0 ...000
MO...0 0 0 0...00
00...0 1 00...00
00...
2’ = SAS™'z + Sbu, (SAS~1= P20 0 0. 200 =I) (2.8)
00...0 001...00
(1§1+0) 0 0...0 0 %0...00
U...0 0 0 0...01
0 0...0 0 00...v,0

We construct now the matrix equation 4 =15 ; it is equivalent to the
system of equations

hiSgi 1,05 = Sui 2 Sgi1,2§~1 = 24,2 .
(i,i=1%1..,k—1)
h;Sgs 05 = MiSgia9i1s Spi-121 = i Sgi-1,9)
(2.9)
hiByio1,0i = S2i2p %u%axﬁ+%mdq“%wmw%:%m5(i & n)
L=k ..

}—] - - . — > =1 P10} PO .
MiSor o) = ViSpio1,0j-105-1  Satgi-a T Sai2i1 T Sai 254295 = Vidi-1,2)

To determine § it 1s sufficlent to find such a solutiorr of the homoge-
neous system (2.9) for which the determinant |S| # 0 . Let us assume that

sljz'm"aij (i! I‘=1""!2k_2' 6'&211 6ij203 i#}.)

- ~— . == i, ] = e 2.40

s2i-1,21’—‘1=fl+(—1)3""”} 0, 82&2}*’!:{1—(—1)3'*“] 0 (G r=k, o m) { )
To determine the other elements of matrix S we consider two cases,

First casge . Let p=n—x+1 be an even number; then we
can satisfy system (2.9) i1f we select the remaining s,, in the following
manner:

Byp-ajiz (Vi) i Bop_si (V) vt (241)

8o Y N JS Soi_ P -
2-1,9kH45-5 T VK22 UL Opp: . T

. Bop_girg (Vi) i1 s Agp-gj (Vi) A vl
Py i okiai-g = " Megj-1Vi
Bk~ G, L Opagg L R A I L

(G=1,...Yp=eln —k41}, i=k ..., n)

Wnen A,= O , w= O, it 1s impossible to determine  Sop_jor-; from
(2,11} and in this case, therefore, to satisfy Equatlon (2.9) 1t suffices

to take

. _c (1) hgyg -+« Ao (@47 = Apis)
2k-1,2k~1 O - - ®

n-1

From (2.10) it follows that metrix $ has the form
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1. 0 0 0 0 0 ...0 0
0...1 0 0 0 0 . ..0 0
0. 0 Spxg,9k1 0 0 Sgk-1,2k+2° + 0 Sok-1,2n
S =
0...0 0 Skgk  Sakak+r O -« +Sykoma O
0. . .0 sp o1 0 0 Son-1,2keg + + O San-1,2n
0...0 O 0 San ok Som,gk+1 « .« Sen eng 0
Hence it follows that
Sak-1,2k-1  Sek-1,9k+2 © © - Sak-1,en Sok, ok Sok.gke1 + = Sypena
5] Sgk+1,9k-1  Sgk+12kez © ¢ * Szkir,an Sokieok  Soken,2hir t c c Sokezam-r |
San-1,k-1 San-1,2k+2 ¢ ¢ * Sam-1,2n Sonok San,2kt1 © «Sn, on-1
YRR W W S W
k n/V K1 k42 n
=(—1)* 2(p-1 (Vg — Vel -+ (Y — V) (2.12)
O)kzﬁ)k+14 ceo, (p )'Vk eV
when A, =0, vy 0, and when Ay =, =0
y VUPR W VI & U Wi
. k+1 n’'k+2 “k+3 n )
|8 =c¢(—1)* T (Viea — Vi) (Va— Va0 ¥kpy - - < Vg

38
Wy 7 -+ Opy

From (2.12) it follows that

|S| # O for any 1, satisfying conditions
(1.5) (an (2.12) o

can always be presupposed nonzero since 1t suffices

to assume =), , 8nd this is always possible).
Second case . Let p=n—k+1 be an odd number. Then .
under (2.10) one of the solutions of aystem (2.9) will be

P = 1
Soi-1,2k+45-5 — Mk+2j-2 Vi

)

1
-1t 0 Qpigjg

. =1 ('—1 PEL ik ")
2d.2k+4i-4 T @, .. Opi9j-g i I=bL....7/75 yee ey
Bopai ™) . - .
n 2p-4i ‘i EE (.__ 14 -
Sai-1,2k+4j-2 = Ona--- Opgia v =4 o5, 1 =k .. ,n)
A, (v vt p—~1
— 2p—-4 i — -
S2i,2k+15-3 —kk+2j—1 Pl (l =1 ... g ! =k ..., n)

Op_y - Opygia
for 7\.,‘ =0 (Vk =0)

(mk2 "‘ }"k-n) 7‘R+2 cr A’n

Sgp-1.9k = (—1)7 o

=
R

Co::puting the determinant |S| in precisely the same way as for an even p,
we ge
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for AK == 0 (\’k 5 - )

- A s -1
Moo Fnbgg e Mn

S = (—1)* el 7T () L A U VI L
15 1=( R e ki1 ¥ n n-1
for kk:-“ﬂ (\‘k—_—())
. Yy SOOI Wk
pf TS SRS 't ¥ ] n
Si=c{—1)* ; Vs oe Vo (Ve — Vi PV, — Vv, P
‘ ( ) "’k“’kus . wnqu-s k+1 n\Vk+2 k+1 n n-1

In this case also |$| # 0 under conditions (1.5).

Let us, however, ascertain whether system (2.1) 1s completely controllable
by the controlling action u . For this we write out the 2n-dimensional
vector, the column $> . From (1.4),(1.5) and (2.10) follows:

Sb = {0,000 « o1 0. 0Separ s+ - o Or Cs S o} (2.14)

But since according to (2.8) the matrix L = S45”! has a quasidiagonal
structure precisely of the same kind as treated in [3] and since the vector
SP coincides with the vector b , the conditions for the complete control-
lability of system (2.7) will be *

@, F0, MFh G=1,...,k—1), Gsyp =0 (i =k, ,n)(ms)
;'i#vj (i:-f,...,k-——'i‘,]'=k,,.,,k), v{#vj {i,‘f:k, ,}'l) :

But in accordance with conditions (1.5) and with the proof carried out
above, conditions (2.15) are fulfilled, 1.e. system (2.7 and, consequently,
also (2.1) are completely controllable under a suitable cholce Of W, ,.ceslly .

It should be noted that the gyroscopic forces may contribute to the im-
provement of the observability of the system, namely, is system (1.4), not
being completely observable with respect To the coordinate E = Zaixzi_l
18 subjected to the action of gyroscopic forces, then under (1.5) we can
select these forces in such a way that in the presence of these forces, sys-
tem (1.4) becomes completely observable with respect to the quantity £ .
When A.# O and under (1.5) system (1.4}, not being completely observable
with respect to the rate £‘= (b*) , can be made completely observable by
applying to the system gyroscoplc forces chosen in the manner indicated above.
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