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Necessary and sufflclent conditions are established under which an lncom- 
pletely controllable, conservative, mechanical system can be made completely 
controllable, stablllzablB and observable In the neighborhood of steady- 
state motion by the application of dissipative and gyroscoplc forces. Note 
that paper cl] has considered the Influence of dissipative and gyroscoplc 
forces on the controllability properties of conservative mechanical systems 
In certain special cases. 

1. Let us consider a holonomlc, conservative, mechanical system control- 

led by one controlling action. It Is well-known [2] that in the neighborhood 

of equillbrlum tie linear approximation of such a system can be represented In 

the form yi” = ?b,y, + aiu (i = 1,. . ., n) (1.1) 

It Is also known [3] that system (1.1) Is completely controllable by the 

action u If and only if 

hi#Ajf C$=#=O, (hi=l,...rn, i#i) (1.2) 

Let us assume that system (1.1) Is hot completely controllable by the 

action u . This signifies that there la equality among the X, or that 

some of the numbers c, are equal to zero. 

Below we Investigate the following question: do there exist dissipative 

forces such that the system (l.l), Incompletely controllable by action u , 
becomes completely controllable by this action In the presence of disslpa- 

tion? The necessary conditions for the solvability of this problem can be 

formulated by the following theorems. 

T h e o r e m 1.1 , If among the n\imbers X, at least two are equal to 

zero, or If A!= cl= 0 In even one of the equations of system (1.11, then 

system (1.1) cannot be completeiy controllable by action I( no matter what 

disalpative or gyroscoplc forces are supplementarily applied in this system. 



Indeed, In the c&%86 +ndicsted %t le%%t one Of,the 8qu%tioIS in (1.1) a%n 
berought to the form yt a- 0 by me%n% of % nonalngular linear transform%- 

” 
Let 8ome diesipative or gyroscoplc foreea act EUPplementiWily on the ays- 

tern. Then, Equation y,‘- 0 takes the Porn 

urni = aI~r’ + . . . + a,y,’ (4.3) 

%nd, consequently, the quantity yi ‘- a,#,- ,.. - a,&- COnst IS the first 
Integral of system (1.1) in the presence of the dinaipatlve and gyroscoplc 
foraes independently of u . Obviously, a system is not completely oontrol- 
lable if it admits of even one firat Integral whiah la independent of the 
controlling actlon. Thla proves the aestrtlon. 

An analogous assertion holds for the nonlinear case if there exist more 
than two cyclic coordinates or If for one coordinate the corresponding value 
a m 0 l Conaider the system 

?Ji”=h,?Ji+UicG (i = j,...,k), _&“=h$, (i=k+l,..-~n) (1*41 

ai 7’ hj, f&#_o (i,j=l,...,k, i#i) 

p&,&& @=I, . . . . k-l, k+l,...,n) 

Let us assume that besides the 
%&ion, dissipative forces act on 

conservative forces and 
syetem (1 .‘i) . 

(1.5) 

the controlling 

Theorem 1.2. The fulfillment of cc3nditlons (1.5) ia sufficient 
for the existence of diasipatlve forces such that ‘he incompletely control- 
lable meo!haniCal system (X.1) beaomes completely controllable in the presence 
of diseipation. 

Proof . Let the dissipative forcea be generated by the Rayleigh 
fun&ion k-1 

2R = 2 ~ii~i’~ + i (TiiYia + zT+i+lY{Yi+,) (f *a) 
i=l i=k 

Here R is posltive deflnlte; v.,+~= 0 , i.e. we conaider the system 

which in vector-matrix form wiXl be xi* Ax + bu . 
For an affirmative answer to the question we have posed it aufflces ts 

show that under a suitable o~olce of numbers y,, erttiatying the condition 
that the function B In (1.6) be slgtrpositlve: 

1) the eigenvaluea of matrix A will be real and distinct; 
2) the projection of vector b on w row of the aratrix S1 (where S 

is the f’undanental matrix of matrix A ) ditrerea from zero. 
For system (1.7) we construct the ch%ractsriat.lc equation ]A - WI - 0 

which ln exp%nded form will be 

@I - ll’1$ -ji*) . . h (~~_-f-~ll'k,l,~-l -P') A&P) = 0 fP = fi - k-F 1) (4.8) 

Here ilo, 18 determined from the recurrence rcallzatlona 



284 

Let us show that under a Proper choice of ylrr Equation A,,(W) = 0 has 

2t distinct real roots. We denote them by 
be carried out by induction. 

,,@il t * . *, VL-,i(2*,, The proof will 

From (1.9), when vn,+'>-_4hn , i!&.&) = p9 + yntrp -- kn == I) has the two 
real roots 

which also are distinct. 

We show that under s proper choice of the numbers Y~_,,~_~,Y,,__~,~ Equa- 
tion A*(U) - 0 has four real roots. 
since it follows from (1.9) that LI,@,(~)?~~?I 

Ah(u)-+- as w---" and 
being a continuous function, 

A,(P) has at least one real root In the Ante&al - oo<p <pL1 ('1 In just 
the same way it can be verified that the function d,(u) has at least one 
mare real root in the Interval 
number. 

la.,@ <p<-_i- oc Let E > 0 be an arbitrary 
Under the conditions - 

yii > s - s-‘hj , yji” + llhj > 0 (i = k, . . ., n) (1.10;) 

Imposed on y,, , there holds the relation 
_ (_ e)? - yij (- F) I- hj > 0 (1.11) 

i.e. the point 

We chase 

p=--c Is to be found between the roots of Equfttion 

Y.-1.n such that 

ALI (- 4 = (- EB -I- Yn_l,n_,e .I- &_,) .k (-- PI - &2y2,t, )&_-_l > 0 

for which It is sufficient to require that 

L, n <s-a I(- a“ + rn_r, ,L_ls i- J.,(_1) A, f- 811 (1.13) 

From fl.10) and (1.13) it follows that the indicated choices of Yant 
do not contradict the positive definiteness of 17 in 

indicated choices of Ynn, Y~_~,,,_~ and 
oontlnuous function In the intervals 
one root in each. 

But since the number of roots of A (p) cannot be larger than four, then 
under the stated choices of YIfr dc(!J h as four real, distinct roots distrl- 
buted fn the following order 

,W < $2) <#a) < 
’ 1 1 2 

-s<@)<Q<Q) 

Let us assume that the numbers Yn-j+l,,-j+l,y,-jc~,,,-i-t_z(i z 1j - * *) i T l) 
are ChOSen such that the roots of dai__201) and Ati_4(p) are real, distinct and 
dlstrlbuted'as follows: 

numbers Yn-i+l, n--i+2.ca.n be chosen 
,_s(p) would be distributed analagously 
y&from the fact that &,,b)-(-l)'= 

sign Ati (~~_~2~) =(- ff" 

sign Azi (~2 (2i-z))=(- I)iea, . sign Azi(pF_$ =(- 1jf-2 (1.15) 

. . . ..*.............*....... 

Azi (pirl-2)) < 0, A2i (~Li2'-~')< 0 



then AZ,(~) 
the Interval s ’ 

being a continuous function, has at least one root In each of 

(- 
oo, pyi-e)), ~42i4, ,p-2)), _ . . , ($53, $!;2)) 

But since 

(p-2', #2i-2) 
(1.X) 

If1 h * . . , (p$y, jtgy), (pg=$? _1- a) 

A2i (~~C~e2’> < 0, A&L?~-~)) < 0, A2i_r(-~) > 0, A,i_,k-e) > 0 

then from (1.9) 
(- e2 + r jl-i+l, ,,_i+l e + X,r-i+l) '2i-c(-')> O 

We choose Yn_i+l,n-i+2 such that 

(-- " -t- Tn-I+l, n-ii 1 ’ 
~~-i+l, n-i+2 < - 

-I,- h n-i+l) Ali- (- 8) 

&AZi_,(-&) 
(1.17\ 

Then In accordance with (1.9) we have A,,(- c) > 0 . This SlgnlfieS that 
da,(p) changes sign In the Intervals o_t'~-'l',-- E) and (-- F, P@~-")) and, 
consequently, ha,(p) has one root in each of these Interval6 since Aa, 
cannot have more than 2L roots, 

The roots of A*,(P) and A ,_)(cr) can not coincide since otherwise it 
would follow from Formula (1.91 that Aa= 0 
assert that under a suitable choice of 
2p real, 
Among the roots 
and only If h,= 
while the remaining roots are nonzero. 
zero root @") does not depend on yIJ 
zero for any y,, . 

while the remaining roots are non- 

It follows from Equation (1.8) that under the conditions Yii2>-4Ai 
(i = 1, . . ., k - 1) the remaining 2k - 
nonzero as well. 

2 roots of this equation are real an9 

Let --__ 
l/Z [ -Yii + l/Tii z _t 4hi ( < min,\p,(2P) 1 

‘/a 1 Tii + j/=X& I< max, ) pd2”) [I PL,(~‘) # 0 (1.18) 

-- 
-Tii f- v/rii'+ 4%i $3 -Tn * f/rllp + 4h, 

(i,Z=l,...,k--l, ifl, f)Z=l,Z,... ,2p, UL#j for pjc2”)=O) 

This can be achieved by Increasing the 
without vlolatl 

j'ii (i Y 1, . . . . k - 1). 
the positive-definiteness of form R . Then, all the roots 

of Equation (1.8 will be real and dlstlnct; 
(j = l,..., 

T 
2n) and only vzr_l will be zero. 

we denote these soots by U, 

To Prove the second Part of the theorem we must show that not one of the 
rows of the matr1x.F' Is perpendicular to the a-dimensional column-vector 

b={O,uI,O,...,O,aR,(J....,O) 
where S is the fundamental matrix of matrix A : 

(1.19) 

s= 

1 i...o 0 0 . ..o 
p1 pz. . .o 0 0 . ..o 
. . . s . . . . . . . . . . . . . . . 

0 O...l 1 0 . ..o 

0 0.. l l$k-3 !$k-3 0 . . * 0 

0 o...o 0 @k-l) (2n) 'zk-1 ’ ’ * ‘s&l 
*...* . . . . . . . . . * . . . . . 

0 o...o 0 5&r (*lr-l) . . * SZtr Pm) 

(1.20) 



The number8 sj” (i = 2k - 1 
tor of matrix A (j = 2k - 1, .‘.‘.; ” 

24, the components of the jth elgenvec- 
2n), satisfy the system of equations 

sag’ = ~j8~~~l 

A, s:jk’-, - 

T&g’ - rhk+l sljk’t2 = 

0) 

pjs2k 
. . . . . . . . . . ...**... 

- r,_, nSg_a + h Ji’ n 2n-1 - r nnspJ = p ,(j) 
I 2n 

(;=2k-i,...,2n) 

This system can be put in the form (1.21) 

7*-i n-i+1 Irjs$-2i-1= thn-ij I- P’T _. 3 n tt1, n-hi 
-.pj2) ,(j)_ (j) 

. 2n 21+1- pjrn-i+i, n-i+a”zn- ti1+3 

(j) 
‘Zn-2it 2 = P j'fJl-f_zi+l 

(j) 9 %--1 
=I, sg+, = 0 , Tk-lk = Ynn+l- -0 

(i=l,..., n-k+l, j=2k--1,...,2n) 

Let us replace the s(/) in accordance with Formula 

,(i) -1 -1 
Tn_,nTnd2,n_1 ’ * ’ 7 

-1 
2n+!.i+1 = 

(3 
n atl, n-i+2”2n-zi+l _’ 

(i=I,..., n-k+l, i=21c-_,...,2n,v~~_l=s~~__l=1) 

Then Equations (1.21) take the form 

Pjv$L*i-l ='$)_zi+l (h,-i+l-_jY,-i+l,,-i+,-_ILj2)-~j72ni+l,n-i+a~~~i+s 

(i=i,..., n-k+1, j=2k-f ,..., 2rt, z$~+~=O) (1.22) 

In case Pj#O(iz2k,...,2n) when A,= 0 the components of the (2k-l)-st 
eigenvector of matrix A take the form 

$zk-U = 0 #k-l) = 0, @k-l) 
1 , . . . * zk_2 S.&_l = I 1 spkk-l) zzz 0, . . . ( sg+-l) = 0 (1.23) 

Equation (1.22) here becomes an identity. Therefore, dividing Equation 
(1.22) by pi(j = 2k,. . .,_2n), we get 

,(j) ’ ,(j) an-zi-1 = 2n-2itl ( ‘?!I!.!5 - rn_i+l n_i+l  - p j  
(1.24) 

ur I 
- ?t-i+l, n-it2 4%2i+3 

Note that not one of Eqbitions A @) = 0 (i = 1 p - 1) In (1.9) can 
have a zero root and, therefore, whe2ii constructing’ &s<em (1.9) we could take 

D,(p)++- P - ~,_i+l, n-i + 1 ) D2i -2 (P) - %-i+l, n-i+2 D2i-* (p) 

as the recurrence relation:=“. “‘p-1’ Do=1) . 
It is obvious that the roots Dzi (J.L) and A2i (p) (i = 1, . . ., p - 1) coincide. 

From Equations (1.24) and (1.25) It follows that 

u) vsrl-2i+1 = D2i @j) (i = 0, . . ., n - k, j = 2h!, . . ., 24 (1.26) 

Consequently, 
(0 

‘2n-2i+l =r,kI, nT;l-2, n-1 . TZi+l, n7i+zD2i-2 (Pj), 
(j) 

‘2n-2it2 
= pjs:;_ti+I (1.27) 

We need to compute the determinant of the matrix S in order to find the 
matrix S-’ . Since the matrix S has a quasidiagonal structure, then 

@;l) (2n) . . . *2k-1 -.- 
I s I= fil2 + 411 . . . Jqk_,, k_1y+ 4h,_,’ . .-. * . . - . l 

“yl) . . . 2 s g0 

Multiplying every column of the determinant by 
!Jar-1 f C), 

$-” (i - 2/i - 1, . . . . 2n, 
we reduce It to the Vandermonde determinant, after which we get 



zk-m 

1 s \ =(- I)= v- ’ - - -f&l, k-1 + 4&_1 
- rg+lhn-k rn-ln - ‘,, k - ’ * Xk,l 

n-k x 
IL&i * . * hzn 

x (p2k- P2k_1). ‘. @2n--2n-J for &k-1 # o (1.28) 

HoweveT, when 1, = 0, ,$k_l = O, 
p;ik . . 

then to compute S it suf ices to divide 
and multiply by . pz;’ and we get a f’Oda I /.mkr to f~z8). Let um 
denote the elements of the matrix S” by P,l. fi0m (1.X)) it follOM that 

S -I= 

PLl Pl!a- - - 0 0 0 . . . 0 

PO1 Pl2 - - - 0 0 0 . . . 0 

. . . . . . . . ..*..a........ . . . . . . . 

0 0.. * &k-E, 2k-2 Pak-2,2k-z ' . . . 0 

0 0.. ' pdk-2, ik-.s &k-z, 211-a ’ . . . 0 

0 0 . ..o 0 hk-1, Sk-t . . . pak-1. zn 
. . . . . . . . . . . . . . . . , . . . * . . . . . . . . 

0 0 . ..o 0 pm, ak-1 * * *hn,Zn 

To prove that not one of the rows of matrix S1 ir 
vector b In (1.19) it is suffloient to show that 

(1.29) 

petrpandloular to the 

hk-8, 2k-2 = - 
If :,+ 4hk-l 

#Oo, 
I 

r2k-l, 
Pak-2, 2k-2 = 

f-r2k-1. k-1 + 4hk-l 

#O 

And this follows lmmedlately from the course of the proof of Theorem 1.2. 

Thus, when aondltlons (1.5) are aatlsfied, the dlsslpatlvc foroes oan be 

chosen in accordance with (1.6),(1.10),(1.17),(l.l8). Aecordlng to the theo- 

rem on the duality [4] betweeh oomplcte oontrollabllity and obaervabillty, 

system (1.1) which is Incompletely observable with respect to the quantity 

5 - (OX) (where c = (R, 0, .*., OkI 03 . . . . 0)) oan be made completely 
observable Ii, In addition to the oonservative forces, dlsripatlve ltoraes 

are applltd to the system in the abovo-mentioned manner. If we further 
assume that X,# 0 , then under (1.5) system (1.1) is lnaompletely obrervable 
with respect to the rate s’- (a*~) , but In the presenoe of dlaalpatlve 

forces in the manner stated above, the system oan be made completely obrerv- 

able with respect to the quantity 5” (b*x) , 

In both cases conditions (1~5) are neoessary and suffioient for the exlst- 

ence of the dissipative forces which make system (1.1) completely observable 
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with respect to the quantltiee 5 I (ox) an& $‘= (Fr) . 

i, In order to study the Improvement in the oontrollabifity af system 

(1.1) due to the application of gyroecopic force8 , we can prove the suffici- 
ency of the conditiona of Theorem Il.1 In the presence of which system (1.4) 
becors completely controllable. 

Proof l Let gyroscopic forces be applied such that In their presence 
the ryster (1.4) takes the following form: 

and, In veotor-matrix form, x’- Ax + brc . 

Let us reduce system (2.1) to the first normal form (153, p.125) by means 
of nonsingular, real, linear transformation. For this we muet determine the 
elementary divisors of the matrix A - p.iT . We formulate Equation 

which In expanded form will be 

e2 - h,) +b’ - &) - . - (j.&’ - hk_1) Azp @) = 0 (P = n--k-+1) 
here bar (u) la determined from the recurrence relations 

Azi fp) = (pL? - An_& LI~~_.~ (Jo) + @n_i+Xp’BAzi_r (p) (i = 2, . . ., p; Ao = 1; .b_z = 0) P-3) 

DanotUg u’l v , let us show that the numbers w, can be chosen such that 
BqUtiOn AL1* (v) - 0 would have t distinct, real roots not coincident with 
the roots of Ao,_o(~) I: 0 e We prove thfs by induction. When t = 1 this 

X, Is a real number while A4 (v) = Y - h, = 0 OP 

= 2 we heve 

A, (Y) = (Y - &_,t Az fv) + Q$_~A, 

c < 0 be sn arbitrary number not colnoidSng with the numbers 
?L tq$d)vi.e. with the roots of (A,+, n-1’ , - v) A, (v) = 0, Then, when 

A,(v) -r+* 813 
l%t roots of 

* Thus we hsve 
not oolnollUln# with yy’. 

then A*(V) has the real, distinct 
cannot coincide since other- 
has two real, dletinct TOOts 

Let us a6mme that the function6 A,,,.(v) and Aa,_4(v) have, rasp=- 
tfvely, t - 1 nnd t - 2 real, distinct roots whlah do not croincide. 

We show that o,,~+~ can be rbaected such that (v) has t real, dis- 
t&s&not root8 not coinoident with the roots of S We write out Aor(v) 
88 follows: 

Aa (v) = (Y - hn+l,i) Ati-8 (v) f- %-i+lvAti-4 (‘) (2.4) 

Its 
Mnmt A, (u) is s pol$noalsl of order )Che~ v and the Coefflolent of 

leldlng Germ is unity (J - 0,. . ., P.1, 
sign A2i (- 00) = (- a)“, sign A,, (- M) = (-- f)i (2.5) 

A,, (+ 00) > 0, Azi+ (t- =+) > 0 

r&t 
e>max+1 VjW4) I (1 <i< i -2) 

Hem v\*'-4) Ice the root6 of Equutlon 
I (- 1)fi-13und*r (2.3),(2.5) uul 

A~,_~(v) - 0 . Then sigr, Aai (- s) = 
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2 
- (ef An-i+11 Ati-2 (VI 

%-i+l > EApi -4 (- ~1 

Thm Ew-; A/, (v) - 0 haa at least one root to the left of the point 
v---c. - 0 la not a root of Asl_r(v) , then VA 
t -1 real, distinct rooti, i.e. as v Ie varied from - c 

‘tg4(+v) haa 

v~~,_~fv) changea sign t - 1 tImee. 
o , 

signs of V&,,+(V) and Aa, 
By Choosing I#,, , *I 10 large that the 

colnclde at least at one point In every 
interval Included between the roots of vA*,_~(v) - 0 , we obtain from (2.4) 
and (2.5) that Al,(v) has t - 1 changes of sign to the right of the point 

Yee6st Ct 
and, consequently, Aa, being a continuous function, has at 
- 1 real roots to the righi of the point v I - c . 

From what we have said above It follow8 that by increasIng UI,,,+~ we 
can make Api h ave at leaet t real, distinct roots. But since Ap (v) 
cannot have more than t then Aa, has precisely t real, 

The roots ofroizptv) and AgL 
die- 

tlnct roots _ a(~) cannot coincide almce other- 
wise either of the roota of ho,_.(v) and i,,_,(u) would coincide or u-0 
would be a root of Asi_a(v) . 

But both theae cases are Impoaslble since In the first case, by Induction, 
A S L _. (v) cannot have common roots, while In the Iecond, 

= 0 (i = 1,. . ., p - I), which also Is lmposslble according to 

Thue, we have proved that it is possible to select IU,, , . , . , UI 
that the roota of A*,(v) 

such 
are real, dlstlnct and noncoincident WI& the roots 

of All,a(v), (t .’ 1t.a.r P) . From condltlona (1.2) it follows that only 
X, can be zero, and when X,- 0 , 
Independently of IU,, . . . . u),_~ L 

(from (2.3)) A,,(u) has one zero root, 

equals zero. 
Let us afssume that when 1,~ 0 only v~P) 

Since the roots of Asp_ P(V) and A ,,_d(~) do not coincide, it follows 
from (2.3) that A, IS the only root that A,,(V) - 0 and AID_,(v) - 0 
can have In connnon. Consequently, In very small neighborhoods of the remaln- 
Ing P - 1 roots of Equation A IP(~) - 0 , the derivative 

dA,,, 0’) 
~ = vA2p_4 W # 0 

dokZ 

I.e. there exist mono$onoue functions 
express the roots +?P) In terms of 

f#,,’ ) = .j(2’) (j = 2, - * *? p), +qhi,.h 

variationa of aks we’can achiev 
ulra . Hence It follows that Under small 

X 
are coincident with the roota v 

ezDjhat notn;,ne of the numbers X,, . . ., 

X 
- of Equation Aop (v) - 0 

1 
IS a root Of Aap_ .(v) , then’ vlhj 2 ‘2’ which also does not coincide 

9 

d 
w th the nuanbers 1 x 

233-4 (v) = O,then 
Hbwever, If X, la not a root of Equation 

id)‘gii, t&l bi means of varying ’ we can achieve that 
42~) also la notY’coinoldent with the numbers A,, .?, X,,, . 

’ Thus, Under (1.2) 
the roota of EquatIo 

wevc~ka)elect the numbers u) ,.,., UI,,~ such that all 

We denote by &, . . . , 4’ 
1 a.. (v - $_ ) A,, (Vf - 0 are distinct an&;;al, 

k-1, vk, - * * ; ‘,,t and ere i ~~-0 when X-O 
by e proper choice of U, , . . . , UI,_~ , Equation (2:2) oan be wrltten’as ’ 

tp - h,) . . . (p - hk_1) c” - v,.) . . . @” - v,.,) = 0 (2.6) 

Conseqwntly (C53, p.l27), by’meane of a noneInge.lar linear transformation 
(In the real nUmber field) we can reduoe matrix A to a quaaidlagonal form 
each of whose diagonal cells Is of 6econd order and has the form 

0 I I I vi 0 
(2.7) 

!&en in matrix symbolism system (2.1) takes the form 
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0 l,.. 0 0 0 0. - -0 01 

a1 0 . . .o 0 0 0.. .o ol 
0. b l I....., . .o 1 0 . 0.. . . . .o . , 0 . 

z’ = SAS-‘z f Sbu, (sas_&g ;-,““-1; ,” ;“‘;; 
= L) (2.8) 

* . * . . . 
flSi#O) 0 O,.. 0 0 v,O.. .o 0 

d ij. . . . . . 0 . . 0 . . 0 . 0. , . . .o . . , I - 

0 0.. * 0 0 oo...v,o 

ve construct raw the matrix equation SA = IS ; it 5s equivalent to the 
system of ewatlonLl 

?“jR2i_1,2j = S ’ 2L2j’ ‘Zi-1,2j-I = %,Zj 
(i, j=l,...,k--1) 

‘js2i,2j = ks2i-l,2j-1 9 $2i-1,2j-1 = ‘i ‘2i-1,2j 

(2.9) 

ajsr&$-r,d z *s,%j. @j-l%f-l&-a + S2f-L2j-l - L-z,ai+zwi = s2W fi, i=; k, ) . ‘, n) 

'jS2t,2j = vfs2i-1,2j-loj-~9 %f ,Zj-2 t- s&2j-l-s2i 2j+2*j E vis2i-l,2~ 

To determine s It Is sufficient to find such 8 
neou8 aybtem (2.9) ior which the determlrBM IS\ f 

sij=&j (ilj=1. ...,2k_22,6<i~i, 

s z;i-t,2j-li.rl+l-l)j-k+l]= O' '2~,aj_li,[r-r-llj-k+l] z O 

To $&ermine the other elements of matrix S we 

solution of the homoge- 
0. I& UB a88ume that 

&j= 0, i *j) 

fi, j-k, _,., n) f2.10) 

consider two Cases, 

First case Let p=n- 8 + 1 be an even number; then we 
can satisfy system (2.9)'lf we select the remaining s,$ in the following 
manner: 

A h 2p-aj~'if 

s2i-l,2!c+aj-5 =%+2j-2" 
2~-4ji2 W +2 

n-1 l ‘ l %+zj-2 f * W-l,zk+dj-2 =r a~,_~. . . m 
$-l (2.15) 

k+zj-1 

A 2p4jJ2 (vi) +j_l 
Azp-aj (“4) 

8~,2k+qj4= 0,_1 . i . Ok,zj_a ’ ’ S3L2k-~4i-3 =2= w,_~. . . 0~+2~_~ 
hk+2j_lv<-l 

(j-1 ,..., */sP=~/,[ta--k+ r], i===k,.. .,nl 

When A,= 0 , uk- 0 , it is Impossible to determine %?-1*2K--1 fIwn 
~~.~.;.~a” in thfs ceae, therefore , to Satisfy Equation (2.9) it Suffices 

Prom (2.10) it follows that matrix s has the form 



291 

s= 

1 . ..O 0 0 0 0 . . . 0 0 

..*.........,.,,.*..,..,.,...... 

o...i 0 0 0 0 . . * 0 0 

0. . . ’ %k-l,sk-1 ' ' 'd-a.zk+z ' ' ' 0 %k-iszn 

o...o 0 %k,%k %k,zk+l 0 . . * ‘zk.zn-1 0 

,.....,.a,........... . . . l . . . . . . 

0 . * * o Sm-l,+l ’ ’ %-l,2ktz * * * 0 Spn-l,2n 

0 . ..o 0 0 %n,zk %n,gkti * - l %&en-1 0 

Hence it follows that 

1 .Y ( = 

Sak-l,zk--L %k-l,zktz * * - ‘ak-l,wl 

Ssk+1.4-r %k+l,zk+z ’ * . ‘zki-l,zn 

. . . . . ..*......... 

%sn-I,ak-l ‘an-l,zk+z ’ ’ l sm-~,m 

:tzk. ak %k,ok+l ’ * ’ %k,!m-1 

%k+z,zk ‘zkta, 2kil ’ l ’ %kiz,an-1 

. . . . . . . . . . . . . . . . . 

%n.zk %n,zktl * ’ * %n,m-1 

0 w-l)y k * . . v, (‘k+l - v&a . . . Iv, - vn_l)2 (2.12) 
. . . n-l 

when ?bk # 0, vk # 0, and when Ak = vk = 0 

@kta -Vkkl)” * *(“n-v,,._$Vk+l***v, 

From (2.12) it Pollowe that ISI f 0 for ~IW LI satisfying conditione 
(1.5) (in (2.12) c can always be presupposed nonzero since it suffices 
to asa- ml;” # lk+lr and this LB alWSgS posalble). 

-Jr+1 beanoddnumber. Then ,, 
UXM%~( ii .yO? $e ~fat~eemiutk% %~f&tem (2.9) will be 

for 1, # 0 @k # O) (2.13) 
’ (‘i) 

S+I,sk+4J_6 = &+2j+ w2:‘ym,+2j_, vi3-2 (i = 19 - ’ so + , i=k,...,n 

A zp-rj+a (‘f) vij_ 1 P+l 
%.zk+ai-4 = o,,_~ . . . wk+2j_a 

j=$,..., 2 -, i=k,...,n 

A aP-4i(vi) P --1 . 
%-1~2k+4j-2 = o,_~ . . . Or+2j_l 

vi j-1 
i 
i=i,...,y--- , L = k, . . ., R’ 

I 

szi,zktlj_3 =hkczj+ ;;l-f;k;jl (i = 1, . . ., 9 , i = k, . . a, n) 

for h,=o(vk=o) 

‘2k-l,Zk-l= (-- 1 1” 
(Ukf -hk,,)hk+2*“hn 

p =c 
w n-1. *. Ok 

Computing the determinant ISI in precisely the same way a8 for an even P, 
we get 
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In thie case also 151 # 0 under conditions (1.5). 

Let us, however, aeeertaln whether system (2.1) Is 
For this we write out 

i~c:!ii~~“%%% ‘i?” l&xi (1.4),(1.5) and (2.10) 

completely control1 
the 2n-dimensional 
follows : 

.able 

But since according to (2.8) the matrix L = S4T1 has a quasidiagonal 
structure precisely of the same kind as treated In 133 and since the vector 
sb colnoldee with the vector b , 
lability of system (2.7) will be 

the condltlons fOP the complete COntrOl- 

aif 0, Xi~ hj ii, i = 1, f , .f k - I), aks2s2k + Q fi = k, . . ., n) 

ki# vj (i = I, * . .( k - ;, j = Ii, 1 * ‘( n), vi =#z vj (i, j = k, . * ., n) (2s15) 
But In accordance with conditions (1.5) and with the roof carried out 

conditions (2.15) are fulfilled, I.e. system (2.7 P and, consequently, 
are completely controllable under a suitable choice of wII, . . .,u+~ . 

It should be noted that the gyroscaplc forces may cont.rfbute to the’lm- 

provement of the observability of the system, namely, is system (1.4), not 

being Gompletely observable %lth respect T+O the coordinate E = Zoc~X~_, 

Is subjected to the action of gyroscoplc forces, then under (1.5) we can 

select these forces in such a way that in the presence of these forces, sys- 

tem (1.4) becomes completely observable with respect to the quantity f - 
When x,f 0 and under (3.5) system (1.4), not being completely observable 

with respect to the rate 5’s (b*x) , can be made completely observable by 

applying to the system gyroscopic forces chosen in the manner Indicatedabove. 
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